Exponential self-replication enabled through a fibre elongation/breakage mechanism
نویسندگان
چکیده
Self-replicating molecules are likely to have played a central role in the origin of life. Most scenarios of Darwinian evolution at the molecular level require self-replicators capable of exponential growth, yet only very few exponential replicators have been reported to date and general design criteria for exponential replication are lacking. Here we show that a peptide-functionalized macrocyclic self-replicator exhibits exponential growth when subjected to mild agitation. The replicator self-assembles into elongated fibres of which the ends promote replication and fibre growth. Agitation results in breakage of the growing fibres, generating more fibre ends. Our data suggest a mechanism in which mechanical energy promotes the liberation of the replicator from the inactive self-assembled state, thereby overcoming self-inhibition that prevents the majority of self-replicating molecules developed to date from attaining exponential growth.
منابع مشابه
UV stalled replication forks restart by re-priming in human fibroblasts
Restarting stalled replication forks is vital to avoid fatal replication errors. Previously, it was demonstrated that hydroxyurea-stalled replication forks rescue replication either by an active restart mechanism or by new origin firing. To our surprise, using the DNA fibre assay, we only detect a slightly reduced fork speed on a UV-damaged template during the first hour after UV exposure, and ...
متن کاملAmplification of Tau Fibrils from Minute Quantities of Seeds
The propagation of Tau pathology in Alzheimer's disease (AD) is thought to proceed through templated conversion of Tau protein into fibrils and cell-to-cell transfer of elongation-competent seeds. To investigate the efficiency of Tau conversion, we adapted the protein misfolding cyclic amplification assay used for the conversion of prions. Utilizing heparin as a cofactor and employing repetitiv...
متن کاملSpi-1/PU.1 oncogene accelerates DNA replication fork elongation and promotes genetic instability in the absence of DNA breakage.
The multistage process of cancer formation is driven by the progressive acquisition of somatic mutations. Replication stress creates genomic instability in mammals. Using a well-defined multistep leukemia model driven by Spi-1/PU.1 overexpression in the mouse and Spi-1/PU.1-overexpressing human leukemic cells, we investigated the relationship between DNA replication and cancer progression. Here...
متن کاملGenome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast.
The S-phase checkpoint kinases Mec1 and Rad53 in the budding yeast, Saccharomyces cerevisiae, are activated in response to replication stress that induces replication fork arrest. In the absence of a functional S-phase checkpoint, stalled replication forks collapse and give rise to chromosome breakage. In an attempt to better understand replication dynamics in S-phase checkpoint mutants, we dev...
متن کاملAtaxia telangiectasia mutated (Atm) is not required for telomerase-mediated elongation of short telomeres.
Telomerase-mediated telomere addition counteracts telomere shortening due to incomplete DNA replication. Short telomeres are the preferred substrate for telomere addition by telomerase; however, the mechanism by which telomerase recognizes short telomeres is unclear. In yeast, the Ataxia telangiectasia mutated (Atm) homolog, Tel1, is necessary for normal telomere length regulation likely by alt...
متن کامل